
Introduction to the surface package

Travis Ingram

This tutorial walks through the steps of a SURFACE analysis using a simple demonstration
data set. The main use of SURFACE is to construct a macroevolutionary adaptive landscape for a
clade, given only a phylogenetic tree and measurements of one or more continuous traits for each
member species. This is done by using stepwise AIC algorithms to �t a series of `Hansen' models
using ouch functions, with two distinct phases. In the forward phase, new selective regimes are
added to the model, and in the backward phase multiple regimes may be `collapsed' into convergent
regimes discovered independently by di�erent lineages. The �nal model provides an estimate of
the macroevolutionary adaptive landscape, and can be compared to simulated data to evaluate
whether the clade contains exceptional phenotypic convergence.

The surface package can be downloaded from CRAN (http://cran.r-project.org/web/packages/surface/).
Also required are the packages ape, ouch, geiger and igraph and their dependencies. First, load
the surface package along with its dependencies, then import the data object surfaceDemo con-
tained in the package. This object consists of a 25-taxon tree in phylo format, and a simulated
data set that includes measurements of three continuous traits for each species.

> library(surface)

> data(surfaceDemo)

> tree<-surfaceDemo$tree

> dat<-surfaceDemosimdat

At this point, the tree and dat objects could be provided as input to the wrapper function
runSurface, which carries out both phases of the analysis in a single step. Instead, let's look at
the two steps separately to make the sequence of events clear. The function nameNodes ensures
that each node in the tree has a unique label, for easier conversion between formats later (if nodes
are already labeled, as is the case for the demo tree, the function returns the tree unchanged).
convertTreeData converts the tree and data objects into a format ready for analysis with the
ouch function hansen.

> tree<-nameNodes(tree)

> olist<-convertTreeData(tree,dat)

> otree<-olist[[1]]; odata<-olist[[2]]

The data set is now ready for analysis with SURFACE. We use the function surfaceForward

to add one selective regimes at a time to the model, by repeatedly calling the function addRegime.
By default, the starting model is a single-regime OU model, although one can optionally start an
analysis with a model containing some regimes by specifying a starting_list.

The default arguments should be suitable for many analyses, but one can specify options such
as a di�erent aic_threshold for accepting model improvements, a limit to the max_steps of the
algorithm, whether to sample_shifts within sample_threshold AIC units of the best model
rather than choosing the best model at each step, and whether to exclude a fraction of the worst
candidate models from the previous step (see documentation for surfaceForward for more). By
default progress is not printed out, but one can choose to print (fairly extensive) output to the
console with verbose=TRUE, to view a visual representation of the change in AIC at each step in
the graphics device with plotaic=TRUE, or to save the output to a �le filename at each step to
guard against crashes or exceeding run time limits using save_steps=TRUE. This step should take
a little under a minute, but can be quite long for larger data sets.

1

> fwd<-surfaceForward(otree, odata, aic_threshold = 0, exclude = 0,

+ verbose = FALSE, plotaic = FALSE)

> k<-length(fwd)

The object returned by surfaceForward, which has been named fwd, is a list of length k, each
element of which is another list containing the output of one call to addRegime. The object fwd is
unwieldy to view all at once, but surfaceSummary can be used to retrieve information about the
forward phase, such as the sequence of AIC values:

> fsum<-surfaceSummary(fwd)

> names(fsum)

[1] "n_steps" "lnls" "n_regimes_seq" "aics"

[5] "shifts" "n_regimes" "alpha" "phylhalflife"

[9] "sigma_squared" "theta"

> fsum$aics

1 2 3 4 5 6

254.6531 247.0146 241.2537 237.5858 218.8915 184.9636

surfaceSummary also returns the parameter estimates and regime placements from fwd[[k]], the
model returned from the forward phase of SURFACE, which is also the starting model for the
backward phase. surfaceBackward repeatedly calls the function collapseRegimes, identifying
cases where the same (or very similar) regimes are found independently on di�erent branches of
the tree, and where the model simpli�cation obtained by collapsing them into single regimes results
in a further improvement in the AIC. By default multiple regimes can be collapsed at each step
if they are mutually compatible (see documentation), but will be limited to one collapse per step
if the option only_best=TRUE is speci�ed. Other defaults and options are similar to the forward
phase. This step will run in a few seconds, but the time taken increases quickly with the number
of taxa and the number of regimes found in the forward phase.

> bwd<-surfaceBackward(otree, odata, starting_model = fwd[[k]], aic_threshold = 0,

+ only_best = TRUE, verbose = FALSE, plotaic = FALSE)

> bsum<-surfaceSummary(bwd)

> kk<-length(bwd)

surfaceBackward returns another list of lists, and again the �nal element (bwd[[kk]]) is generally
the element of interest. surfaceSummary again summarizes the steps and �nal parameter values,
and also displays measures of the extent of convergence in the data set (deltak and c).

> bsum$alpha

V1 V2 V3

0.4953505 0.2060576 0.6354921

> bsum$sigma_squared

V1 V2 V3

0.2568936 0.1070135 0.2671616

> bsum$theta

V1 V2 V3

a -2.1074807 -0.0456279 1.6418462

b 2.0867971 -2.7325060 0.2075022

d 0.2913212 2.5720458 -1.9620372

> bsum$n_regimes

k kprime deltak c kprime_conv

6 3 3 5 2

kprime_nonconv

1

2

The �tted SURFACE model can be visualized either as paintings of regimes on the tree, or as
color-coded points in trait space. Colors can be generated automatically, and by default convcol
= TRUE, meaning convergent regimes are colorful and non-convergent regimes are grey or black.

> surfaceTreePlot(tree, bwd[[kk]], labelshifts = T)

1
2
11
12
5
6
21
22
23
24
13
14
17
18
15
7
16
25
19
20
8
9
10
3
4

4

2

5

3

6

> oldpar <- par(no.readonly = TRUE)

> par(mfrow=c(1,2), mai=c(0.8,0.8,0.2,0.2))

> surfaceTraitPlot(dat, bwd[[kk]], whattraits = c(1,2))

> surfaceTraitPlot(dat, bwd[[kk]], whattraits = c(3,2))

> par(oldpar)

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

V1

V
2

−2 −1 0 1 2

−
2

−
1

0
1

2
3

V3

V
2

3

Another way to visualize the results of the SURFACE analysis is with the sequence of AICc
values from phase of the analysis. It may be interesting to compare this to the AICc of simpler
models. The Brownian motion (BM) and single-regime OU (OU1) models can be �tted using
startingModel, which calculates AICc by adding log-likelihoods across traits so they are compa-
rable to the SURFACE AICc values.

> bm<-startingModel(otree,odata,brownian=TRUE)

> ou1<-startingModel(otree,odata)

startingModel can also be used to �t a Hansen model that includes speci�c shift placements.
While the purpose of SURFACE is to avoid such a priori information, it may be of interest to
compare the model produced by SURFACE to other models, or to use SURFACE to add shifts
while forcing certain other shifts to be present. To impose some regime shifts, one can build the
desired model using startingModel, and supply this object to the starting_list argument in
surfaceForward. Here, we will simply �t a hypothetical alternative model `H12', which we will
pretend is based on a priori information about shifts into two habitats (H1 and H2).

> H12<-startingModel(otree,odata,shifts=c("26"="H1","13"="H1","5"="H2","19"="H2"))

Now, we can view the sequence of AICc values from the SURFACE run, and compare it to the
values for the other models.

> surfaceAICPlot(fwd, bwd)

> abline(h=bm[[1]]$aic,lty="longdash")

> abline(h=H12[[1]]$aic,lty="longdash")

> text(c(6,6),c(bm[[1]]$aic, ou1[[1]]$aic, H12[[1]]$aic)-2,c("BM","OU1","H12"),cex=0.5)

1 2 3 4 5 6

16
0

20
0

24
0

nreg

ai
cs

BM

OU1
H12

4

The function propRegMatch can be used to compare the �tted model to the `true', generating
model based on the proportion of pairs of branches (either all branches or only taxa at the tip
branches) that are correctly assigned to either the same regime or to di�erent regimes. In this
simple case, SURFACE recovers the generating model perfectly, so both values are 1.

> truefit<-surfaceDemosimfit

> propRegMatch(truefit, bwd[[kk]]$fit, internal = FALSE)

[1] 1

> propRegMatch(truefit, bwd[[kk]]$fit, internal = TRUE)

[1] 1

To compare the extent of convergence in a data set to a null expectation, data can be simulated
under a model that lacks true convergence: either a simple stochastic model such as Brownian mo-
tion, or a Hansen model based on the �tted model from the forward phase; with multiple evolution-
ary regime shifts to non-convergent adaptive peaks. Either can be done using surfaceSimulate:
the following code carries out one simulation under the Hansen null model (set.seed is used here
only for reproducibility).

> set.seed(10)

> newsim<-surfaceSimulate(tree, type="hansen-fit", hansenfit=fwd[[k]]$fit,

+ shifts=fwd[[k]]$savedshifts, sample_optima=TRUE)

We can then visualize the simulated trait data; as there is no convergence in the true model, setting
convcol = FALSE makes a more colorful �gure.

> oldpar <- par(no.readonly = TRUE)

> par(mfrow=c(1,2),mai=c(0.8,0.8,0.2,0.2))

> surfaceTraitPlot(newsim$data, newsim, whattraits = c(1,2), convcol = FALSE)

> surfaceTraitPlot(newsim$data, newsim, whattraits = c(3,2), convcol = FALSE)

> par(oldpar)

−2 −1 0 1

−
3

−
2

−
1

0
1

2
3

V1

V
2

−2 −1 0 1

−
3

−
2

−
1

0
1

2
3

V3

V
2

We can then run SURFACE on the simulated data set, here doing the entire analysis in one
step using runSurface (this should take less than a minute). We can then use surfaceSummary

to extract the results, and compare the number of regime shifts (k) and the extent of convergence
(deltak or c) to what we saw in the `real' data set. In this case, one instance of convergence is
recovered in the simulated data set where two regimes were relatively close to one another in trait
space; as we know that the regimes were nonetheless distinct from one another in the generating
model, this represents `incidental' convergence.

5

> newout<-runSurface(tree, newsim$dat, only_best = TRUE)

> newsum<-surfaceSummary(newout$bwd)

> newkk<-length(newout$bwd)

> newsum$n_regimes

k kprime deltak c kprime_conv

6 5 1 2 1

kprime_nonconv

4

> bsum$n_regimes

k kprime deltak c kprime_conv

6 3 3 5 2

kprime_nonconv

1

> oldpar <- par(no.readonly = TRUE)

> par(mfrow=c(1,2),mai=c(0.8,0.8,0.2,0.2))

> surfaceTraitPlot(newsim$data, newout$bwd[[newkk]], whattraits = c(1,2))

> surfaceTraitPlot(newsim$data, newout$bwd[[newkk]], whattraits = c(3,2))

> par(oldpar)

−2 −1 0 1

−
4

−
2

0
2

4

V1

V
2

−2 −1 0 1

−
4

−
2

0
2

4

V3

V
2

If we wanted to carry out a hypothesis test of whether the `real' data set contains more con-
vergence than expected by chance, we could repeat the step of simulating data sets (with di�erent
random number seeds) many times, and running SURFACE on them to get a null distribution of
deltak or c. We could calculate the statistical signi�cance of such a test as the proportion of null
values that meet or exceed the observed value (note that in a small data set like this statistical
power is poor, but that statistical properties are much better given larger trees and at least two
trait dimensions).

For more information about the method, see the manuscript in Methods in Ecology and Evolu-

tion, the help �les for each function, and the SURFACE homepage (http://www.people.fas.harvard.edu/ ingram/web/surface.html).

6

